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Abstract. A new method of studying percolation fronts is introduced in situations where
the concentration is not constant {gradient percolation approach): it consists in an efficient
way of determining subsets of the percolation cluster which are exactly at the percolation
threshold. The method is applied to both lattice and continuum percolation in order to
determine the percolation threshold in 31> more accurately. Two variations of this method,
illumination and projection, seem to give a similar scaling behaviour at low gradients for
the cubic lattice case, leading to a new estimate for the percolation threshold: p.=
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0.311 73£0.000 07. For continuum percolation of overlapping spheres, the new estimate
for the critical volume fraction is 0.291£0.002, and the value of the critical exponent a,
for the width of the front scaled with the concentration gradient is very close to the one
for the lattice case.

1. Introduction

Gradient percolation approach [1-6] has proven to be a fruitful extension of the usual
percolation problem. Percolation in a concentration gradient has been shown to be
closely related to various physical problems including fractal interfaces in diffusion,
corrosion, intercalation and invasion of porous media under gravity [7-91. In addition,
gradient percolation approach has provided a way to get the most precise estimates
to date of the percolation for 20 lattice and continuum percolation {2, 4, 6].

Such an accurate determination of the percolation threshold p. in 2D is based on
the following observations. Due to the concentration gradient the infinite percolation
cluster is limited by a front (external perimeter) whose structure is similar to that of
a percolation cluster hull [10]. If the gradient is along a direction z, the front is restricted
within a region where the average probability of occupied sites is equal to a value p¥,
tending to p. when the concentration gradient Vp=dp/dz tends to 0 as

(pE—p)~ (Vp)* (1)
where a, =1 for the lattice [2] and continuum [6] cases in 2p. It is also of interest to
study the width oy of the front which has been shown to scale as

oo (Vp) e (2)
where o, has been related to the exponent » of the correlation length as e, = v/(1+ v)
and to the fractal dimension D of the front as Dy=1/a, =(1+v)/» [1]. As v=% in
20, this gives a, =%, and D;=], very close to both lattice [1] and continuum [6]
simulations of gradient percolation in 2. A considerable reduction of the computation
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time has been achieved due to the fact that the identification of the front is a relatively
short procedure compared to the usual cluster recognition techniques in percolation
problems.

However, in 3D the structure of the front has been found to be quite complex and
its extension may be very wide [3, 5]. In the lattice case it extends through a probability
region: p, < p <1-—p., where p,, and p., are the percolation thresholds for the lattice
of interest and its matching lattice [11]. The front has a fractal dimension D;=2.5
close to p., or 1 —p.,, and is compact, with .= 3, in the region between them. In this
sense the front may be considered as a representation for an ideally porous material
[7]. Due to such an extension of the front its position no longer simply coincides with
either of the thresholds p_; or 1 - p.,. Moreover, we may expect that most of the front
is not accessible [12]. Thus, the direct application of the gradient percolation approach
to the 3ap case, which is relevant to a number of experimental applications, does not
yieid a straightforward generaiization of the successfui 2p study. On the other hand,
a more precise determination of the percolation threshold in the 3p lattice case and,
especially, in the 3D continuum case, is of great value. For example, the best estimate
to date for the percolation threshold of overtapping spheres [13] has not been improved
for more than 15 years. At the same time, the recent applications of the continuum
percolation using this result explicitly include the rubber-toughening of polymer blends
[14, 15] and the conductivity of microemulsions { 16]. The generalization of the gradient
percolation to the 3p continuum case has bever been attempted and would be of great
interest, especially in the case of polydispersity, where the results are very few,

In this paper we introduce a new method of studying the front in 3p which has
allowed us to make an extension of the gradient percolation approach to 3D percolation.
It consists in studying only the restricted parts of the front, which will be shown to
be located at the percolation threshold p.=p.,. These parts could be viewed by
illuminating a percolation cluster from above [17]) or by projection of the cluster
perpendicular to the concentration gradient. Hence, we shall consider two variations
of this method, which may be compared to the sunlight shining on a cloud from above
{at noon) or from the side (at sunset). In both cases we shall study the statistical
distribution of the set formed by the most prominent features of the front. In the fattice
case this methaod is straightforward and it leads to a new, more precise, estimate of p,
for a simple cubic lattice deduced from the average position of these illuminated
subsets of the front. In the continuum case the application of the methed is somewhat
more complicated, and different ways of statistical analysis may be chosen. However,
it yields a new, more precise estimate for p. as well. The generalization to the case of
polydispersity at this point is feasible.

The paper is arranged as follows. In section 2 we introduce the method with its
two variations, namely the iltumination and the projection methods, for both lattice
and continuum cases. We also show that the illuminated and the projected parts of
the front are at p.. In section 3 we present our results for a simple cubic lattice and
in section 4 we present those for a continuum percolation case. Our conclusions are
presented in section 5.

2. Mueination and projection of a percolation cluster at p.

Let us first consider the illumination method in a simple 3D lattice case. We define an
illuminated site as a site which belongs to the percolating cluster with no other site
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belonging to the percolating cluster in the lower p direction. In other words, if the
concentration gradient is along the z-direction, with p(z) decreasing while z increases,
for each (x, y) in a plane perpendicular to z, the illuminated site is the site with the
largest z which belongs to the percolating cluster. Such a site would be illuminated
from a light source situated above it (in the low p/large z region). All the sites with
the same (x, v} below the illuminated site would be in its shadow.

If Zmau{ X, ¥) is the z-coordinate of an illuminated site then we define pZ = p({Zyax)),
where the average (.. .) is taken over all (x, y) in a plane perpendicular to z. Identifying
the illuminated sites is a straightforward operation for the computer (however, in
contrast to the 2D case, where the front can be identified without identifying the entire
percolating cluster, we still need here to determine the percolating cluster, and only
then to find its illuminates sites). It remains to show that, in the limit of zero gradient,
p¥ indeed tends to p.. This follows since in this limit all illuminated sites tend to be
at p.. To see this, it is sufficient to consider the definition of the percolation probability
P.(p} for the infinite cluster (the probability of a site to belong to the infinite cluster):
it is zero below p., and larger than zero, increasing with p, above p.. Thus, in a
probability gradient the sites which are close to p, may be divided into two groups:
those below p, tend not to belong to the infinite cluster, hence neither to its illuminated
part. On the other hand, take a site § with coordinates (x, y, zy), belonging to the
infinite cluster, with p(zy) = po > p.. If we make the gradient Vp go to zero, the distance
2, — 2. between the site S and the site with coordinate z. at which p=p., tends to
infinity. As the probability P, (p) is positive for any p> p,., this clearly means that the
probability for the site S to be illuminated, i.e. the probability that there is no other
site of the infinite cluster, with same x and y and p.<p<p,, tends to zero when
Vp - 0. In this way of thinking it is ¢learly seen that the illuminated sites (with highest
z, still belonging to the infinite cluster) form a natural border or frontier between those
two groups and, thus, tend to be at p.. .

In the projection method one makes a projection of a finite part of the infinite
cluster on a plane parallel to z-direction. The low p front of this projection (with a
definition similar to that of a 20 gradient percolation [1]) also tends to be at p.. We
then define p¥, = p(z;,), where z;, is the mean position of the projected front. In the
next section, we shall see the results for both the illumination and the projection
methads for a lattice case.

Both illumination and projection methods thus consist in recognizing subsets of
sites, belonging to the infinite cluster, and situated in a region where p is as close as
possible to p.. This approach lies within the same framework of thinking as the
concentration gradient method approach in 2D [1, 2].

The generalization of the illumination method to the continuum case is as follows.
We consider the percolation of overlapping spheres of radius r,, with a negative
concentration gradient along the z-axis. Having identified the connected (infinite)
cluster we find the illuminated spheres by imposing a square lattice with a certain
mesh on a plane perpendicular to the gradient direction. At each node (x, y) of this
lattice we identify the highest sphere belonging to the connected cluster. We call
Zmax(X, y) the z-coordinate of the centre of this sphere. This sphere is then the
illuminated sphere corresponding to a chosen mesh size (we have usually chosen a
mesh size r./2 in our simulations). Of course, with a finer mesh size one may identify
finer details of the illuminated part, which should result in a more accurate determina-
tion of the average position {zy.). Instead, one may use a finer statistics as another
possibility 10 improve the precision, having observed that some spheres have spanned
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several mesh sizes while the others (usually, the ‘lower’ ones) would only appear once
or twice in overall statistics. Thus, there is a possibility to form a weighted average
proportionally to the area which is illuminated for each sphere (this area is determined
according to the mesh size). Namely, such a weighted average {Zmu)w, 15 given by
Z;nz;/(Z;n;), where n; is the number of lattice nodes corresponding to a given sphere
with a centre at z;. We shall also calculate the usual average position {Z,.)m =32, z:/ N,
where N is the number of illuminated spheres.

Clearly, all the considerations for the average position of the illuminated of the
front being at p. apply also for a continuum case. The projection method may also be
applied to the continuum case to find an alternative estimate of the percolation
threshold. Both methods should also be applicable to polydisperse case.

3. Results for the simple cubic lattice

We have used L'x L' x L lattices, where L' = 176 or L' =240 and L =< 275, with periodic
boundary conditions in the x and y directions. The sites were coded using 2 bits as
follows: 0—empty, 1—occupied, 2—connected. The occupation probability ranged
from poin 1O Pauns WIth Poin < Pe< Pmax, 50 that the illuminated front has remained

within thesa limits in all our samnles, For the laroest oradients one mav taks =N
¥YALIAAAA LIAWOW INNLAELS 11K KAl L VLouiv aGigiooy gralitihn Uhiv llluJ take Pm'n—u

and p,.,=1. Our gradients ranged from 1/50 to 1/4800. The occupation is decided
according to a probability: p(z) = prax + (Pmin — Pmax) 2/ L. The recognition of an infinite
cluster starts from p.,,, (z=1): all occupied sites at z=1 are considered connected,
hence PolPmax) = Pmax. This, obviously, introduces a systematic error, which is expected
to disappear at z larger than the correlation length at p..... The determination of the
illuminated and the projected parts has been described above in detail, and these parts
are shown in figures 1 and 2, respectively. It is interesting to note that the illuminated
front is not necessarily connected and that, though its structure is still complex, it is
visibly simpler than the whole 3D front of a percolation cluster.

The results of illumination and projection methods are shown in figures 3-3. Figure
3 shows how p¥ (illumination method) and p¥, (projection method) tend to p.: from
above for illumination, and from below for projection. We have verified that, at least
for a lattice size L' much larger than the width o of the illuminated front, the threshold
P% does not depend on L'. On the other hand, the value of p¥, does depend on L’ for
the projection method (p¥, is larger for smaller L') in the whole investigated size range.

Assuming a scaling behaviour similar to equation (1) for both itlluminated and
projected fronts we write that p¥ and p¥ tend to p. according to

(p&—pc)~(Vp)*r (3a)
(P& = p)~(Vp) e, (36)
The fitting of our results to equation (3a) for illumination gives

pE=0.31173+0.829 % (Vp)*™**

fnm whicrh we ohtain n =071211 71+7Y1n 5 and o . =0725+0004, We wish t

from which chtain p, , and a; 1
emphasize that the value for the threshold is rather sensitive to the value of a,;. For
example, a,;=0.72 gives p.=0.31165, and a,; =0.73 gives p.=0.311 82. However the
value we obtain for p. with a,;=0.725 remains within the error bar quoted above for
a fit reduced to the n lower gradients shown in figure 4, with n=7.
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Figure 1. [lluminated front. In a 24 x 24 X 24 simple cubic lattice, with concentration ranging
from 0 to I from top to bottom, connected sites are shown as grey cubes: the illuminated
sites (the highest in a given column) are shown in light grey.

The projection method has a slightly different scaling behaviour, at least for high
gradients, as shown in figure 4. However, for low gradients, the two methods appear
to have the same limiting behaviour, hence «,,=«,;. Thus, both illuminated and
projected parts of the 3D front seem to belong to the same universality class.

The new estimate of p, needs to be compared with four most recent and accurate
estimates: p.=0.3117+0.0003 [18], p.=0.311 605+ 107" [19], p. = 0.3116 £0.0001 [20],
p.=0.31158+0.000 06 [21] respectively. It is in agreement and more accurate than
[18] and [20]. 1t is not in agreement with (somewhat higher than) [19]. It is compatible
only with a higher estimate of [21]. The high accuracy of our results may be substantiated
by the following comparison with the analysis made in {18]. As will be shown below,
the width og of the illuminated front scales with the gradient according to equation
(2), yielding «,;=0.436. Thus, the width of the illuminated front in terms of the
probability tends to zero as w= o xVp~Vp®*** when Vp- 0 (whereas' the width of
the whole front in terms of the probability remains almost constant). Now (pX—p,)
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b)

Figure 2. Projected fronts: {a) The connected cluster shown in figure 1 is represented here,
as seen from the ieit. The low concentration front of this projection is shown as a hatched
zone, at the top; (b} projection of the connected cluster, for a much smaller gradient

(Vp=1/700).
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Figure 3. Variation of the average positions of illuminated and projected fronts as a function
of the gradient Vp.

converges to 0 as Vp”7?* hence more rapidly than the width w. Thus it converges more
rapidly than in the classical method [ 18], where the threshold for a given finite sample
size L, p(L) tends to p, according to p.(L)—p.~ W, where W is the uncertainty in
p(L), a parameter very close to our width w.

Finally, in figure 5 we present our results for the width of the illuminated and
projected fronts. A generalization of equation (2) to the 3p case is straightforward,
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(equations {(4a), (4b)).
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Figure 5. Variation of the widths of the illuminated and projected fronts as a function of
the inverse gradients 1/Vp.

assuming for the widths o, (illumination) and o, {projection} as a function of gradient
the following scaling behaviour:

oz (Vp) ™% (4a)
o (Vp) v, (4b)
Fitting our data to equation (4q, b) yields: a,;=0.436 for illumination, and a somewhat
higher a,,=0.539 for projection. We note that both estimates are different from the
expected value a, = »/(1+ v}=0.468 for » =0.88 in the 3p case. This could either be

due to corrections to scaling or this could indicate some fundamental differences
between the structures of the 2p front and the illuminated and projected fronts in 3p.
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4. Results for continuum percolation

We have used a cubic box of size L*, where L ranged from 30r, to 140r_, with periodic
boundary conditions in the x and y directions. The concentration of spheres ¢(z)
ranged from c,,;, at the top of the sample (z = L) to c,,., at the bottom (2 =0), so that
the critical concentration ¢, lies in this interval, and that the illuminated front remains
within these limits for all our samples. The gradients ranged from 3.9x107° 2% to
7.1x107° re * We identify the connected cluster starting from ¢, at which all spheres
are considered connected (see above for the lattice case). The recognition of the
illuminated part and the statistics of averaging is described above in detail, In the
projection method a subset of the connected sites is considered, which lies in the low
concentration region of the illuminated sites. For this reason, we could use this method
for samples with narrower concentration distribution, hence smaller concentration
gradients. In this case, the gradients have reached down to 2x 107 r;*,

Various equivalent definitions have been used in the literature for the percolation
threshold of overlapping spheres [13, 22-29]. Following Kurkijdrvi [24], we chose a
definition for p, which is independent from length units: p.=4w/3 ¢y, ro. From this
we shall determine the critical volume fraction (cvr), which is the fraction of the
volume occupied by the overlapping spheres belonging to the percolating cluster to
the overall volume: cvi=1—exp(p.).

The illuminated part is illustrated in figure 6. One can arrive in this case at the
estimate of the percolation threshold following two different methods. First method:

Figure 6. Iiluminated part of the front in the continuum case, Al connected spheres are
shown: the connected, illuminated spheres are shown in [ight grey.
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assume, due to universality, the same value a,; =~ 0.725 as in the lattice case and fit the
data onto equation (3a). The results of this approach for both standard and weighted
averages are shown on figure 7{a). The resulting estimate is p.=0.341 (standard
average) or p.~(.343 (weighted average), with a somewhat better fit for the standard
average. The second method requires a fit onto equation (3a ) with no other assumption
and the results are shown on figure 8. We obtain a somewhat higher value: p,~0.344
(standard average), with o ;~0.77 or p.~0.348 (weighted average), with o ;~=0.84,
Once more the fit is somewhat better for the standard average. Thus, our overall
estimate for p. is about 0.343+ 0.002. The results are not as accurate as in the lattice
case for two major reasons: the samples were much smaller here, while the smallest
gradient we have considered is one order of magnitude larger than in the lattice case;
the number of samples had to be reduced due to the increased time of computation.

Our general estimate for p, corresponds to a critical volume fraction (cvF): CVF=
0.291+£0.002. This result is well within the range of the most accepted values including

0.48 033
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03 | \
*, D42 ‘ »
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Figure 7. Variation of the average positions of the illuminated (ront, scaled with Vp

0.725,

(a) illumination method, both for standard average and for weight average; (b) projection
method. In this latter case the (Vp)% ™ fit is performed on the four series of samples with
smallest gradients and same size L=140r,.
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Figure 8. Best fits for the variation of the average positions of the illuminated front as a
function of the gradient ¥p.
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[13,22-26): cvF=0.285 {13], cvFr =0.286 [22], cvF=0.282 [231, cvF=0.293£0.008
[24], cvF=0.286+0.009 [25], cve=0.295x0.018 [26], respectively. It is lower than
cvr=0.310.006 [27], which may be considered as overestimated [13], and somewhat
higher than cvF=0.25+0.02 [28]. As these results have not been verified for decades
our method seems to offer a possibility for such an improvement in precision, ’

The results of our study of the illumination front width o} are shown in figure 9.
Both standard and weighted averages indicate values of a, very close to that for the
lattice case: ;i = 0.424; @, =0.435, while a,;, =0.436 in the lattice case. Thus, the
universality seems to be observed after all {29], which indicates favouring our first
method of preserving a,; = 0.725 from the lattice case when seeking p.. Thus a somewhat
lower value of cvF=0.290 should be preferred.

10 — T —
5
c
T
2
I
c
o
-
2 1 . ’
—o—illumination (s.a.)
—e— jllumination {w.a.)
—s—projection
1 —— -
102 103 10%

1/Vp

Figure 9. Variation of the width of the projected front as a function of the gradient Vp, in
illumination and projection methods.

Finally, the results for the projected front are shown in figures 7(b) and 9. The
exponent for the width of the front is a,,=0.48: it is different from the exponent of
the projected front in the lattice case (see previous section). We have no definite
explanation for this fact at present. As in the lattice case, pZ, depends on the size L
of the samples. Hence, to obtain the percolation threshold we made a fit on the results
obtained for samples of the same size (see figure 7(b)). Using a (Vp)*"* fit, we obtain
p.~0.342, a value very close to that obtained from the illumination method. Such an
excellent correspondence is certainly very encouraging.

5. Discussion and conclusion

We have presented two different methods for studying the 3p percolation cluster in
the framework of a gradient concentration approach. These two methods consist in
an efficient way of determining subsets of the percolation cluster which are exactly at
the percolation threshold. Following the gradient method derived in 2D, we use this
approach to determine a better estimate of the percolation threshold in 3p.
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Illuminated and projected fronts are shown to tend asymptotically to p, as the
gradient tends to zero: their average position is shown to converge to p. according to
equations (3a} and (3b). Within statistical errors, the exponents e,; and a,, are shown
to be equal, and to apply in both lattice and continuum cases (universality).

The widths of the illuminated and projected fronts are found to scale (equations
(4a), (4b)) with the concentration gradient. The exponents are slightly different for
illumination and projection. In both cases they are different from the value which
would be deduced from a generalization of the 20 front (equation (2}).

Hlumination and projection methods may be compared as follows. The average
position of the illuminated front is independent of the size of the sample, as long as
this size is larger than the width og. On the other hand, the average position of the
projected front does depend on the sample size. However we have found that, for a
fixed sample size, the threshold p¥, determined from this position converges to p, with
the same exponent as p%, at least for small gradients.

In the continuum case, our generalization of the i{lumination method required the
use of a mesh. We have checked the dependence of our results for p¥ as a function
of the size of this mesh. The value p¥ (standard average) was found to depend on the
mesh size, at least in the investigated range (mesh size of the order of the radius r.).
The use of a much smaller mesh size would have required much longer computer time.
On the other hand, p% (weight average) was found to be almost independent of the
mesh size in the same conditions. Note that, even though p¥% (standard average) does
depend on the mesh size, we expect that its limit for zero gradient does not (this is
due to the fact that, in the limit Vp— 0, both the illuminated and the projected parts
of the front tend to be at p., see section 2).

The projection method does not require the use of such a superimposed mesh; it
requires slightly less computing time and permits the investigation of the gradient
range to slightly smaller values. Hence, whereas in the lattice case the illumination
method is preferable, for the continuum both methods may be used equatly.

In conclusion, we have presented and analysed two new methods for studying the
front of the percolation cluster in a concentration gradient. It has allowed us to achieve
better estimates of the percolation thresholds for 3D lattice and continuum percolation.
We have studied several scaling and universality features of the illuminated and
projected fronts and compared them to those of standard percolation. Other 3p
continuum percolation problems might also be investigated using these methods [30].
Their generalization to the case of polydisperse continuum percolation is underway.
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