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Abstract. A new method of studying percolation fronts is introduced in situations where 
the concentration is not constant (gradient percolation approach): it consists in an efficient 
way of determining subsets of the percolation cluster which are exactly at the percolation 
threshold. The method is applied to both lattice and continuum percolation in order to 
determine the percolation threshold in 3D more accurately. Two variations of this method, 
illumination and projection, seem to give a similar scaling behaviour at IOW gradients for 
the cubic lattice case, leading to a new estimate for the percolation threshold: p c =  
0.3ii i j  =O.OOO 07. For continuum percoiaiion oi overiapping spheres, ine new estimate 
for the critical volume fraction is 0.291 +0.002, and the value of the critical exponent a, 
for the width of the front scaled with the concentration gradient is very close to the one 
far the lattice case. 

1. Introduetion 

Gradient percolation approach [1-6] has proven to be a fruitful extension of the usual 
percolation problem. Percolation in a concentration gradient has been shown to be 
closely related to various physical problems including fractal interfaces in diffusion, 
corrosion, intercalation and invasion of porous media under gravity [7-91. In addition, 
gradient percolation approach has provided a way to get the most precise estimates 
to date of the percolation for ZD lattice and continuum percolation [2,4,6]. 

Such an accurate determination of the percolation threshold p. in ZD is based on 
.the following observations. Due to the concentration gradient the infinite percolation 
cluster is limited by a front (external perimeter) whose structure is similar to that of 
a percolation cluster hull [lo]. If the gradient is along a direction z, the front is restricted 
within a region where the average probability of occupied sites is equal to a value p:, 
tending to p. when the concentration gradient Vp = dp/dz tends to 0 as 

( P : - P . ) - ( v P ) " ~  (1) 
where a, = 1 for the lattice [2] and continuum [6] cases in ZD. It is also of interest to 
study the width or of the front which has been shown to scale as 

u,oC(vp)-". (2) 
where a, has been related to  the exponent U of the correlation length as a, = U/(] + U) 
and to the fractal dimension D,of ihe  front as D r = I j a , = ( l + u ) l v  [I]. As U = $ ,  in 
ZD, this gives a,=$, and Of=:, very close to both lattice [ I ]  and continuum [6] 
simulations of gradient percolation in ZD. A considerable reduction of the computation 
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time has been achieved due to the fact that the identification of the front is a relatively 
short procedure compared to the usual cluster recognition techniques in percolation 
problems. 

However, in 3~ the structure of the front has been found to be quite complex and 
its extension may be very wide [3,51. In the lattice case it extends through a probability 
region: pc ,  < p <  1 -pc2 .  where p c ,  and pc2 are the percolation thresholds for the lattice 
of interest and its matching lattice [ill. The front has a fractal dimension Dr=2.5 
close to pc,  or I - p c 2 ,  and is compact, with Dr=3,  in the region between them. In this 
sense the front may be considered as a representation for an ideally porous material 
[7]. Due to such an extension of the front its position no longer simply coincides with 
either of the thresholds pEI or 1 - p c 2 .  Moreover, we may expect that most of the front 
is not accessible [ 121. Thus, the direct application of the gradient percolation approach 
to the 3~ case, which is relevant to a number of experimental applications, does not 
yieid a straightforward generaiization of the successfui 2~ study. On the other hand, 
a more precise determination of the percolation threshold in the 3~ lattice case and, 
especially, in the 3~ continuum case, is of great value. For example, the best estimate 
to date for the percolation threshold of overlapping spheres [ 131 has not been improved 
for more than 15 years. At the same time, the recent applications of the continuum 
percolation using this result explicitly include the rubber-toughening of polymer blends 
L'*, I,, dllU L U G  bUrluubLrvrry U, L I I I C I " C I I I " I ~ I V I I D  L'UJ.  L U G  &suc,a,,LdL,u,, U1 LLIC g,a",crlr 

percolation to the 3~ continuum case has bever been attempted and would be of great 
interest, especially in the case of polydispersity, where the results are very few. 

In this paper we introduce a new method of studying the front in 3~ which has 
allowed us to make an extension of the gradient percolation approach to 3~ percolation. 
It consists in studying only the restricted parts of the front, which will be shown to 
be located at the percolation threshold p E = p E , .  These parts could be viewed by 
illuminating a percolation cluster from above 1171 or by projection of the cluster 
perpendicular to the concentration gradient. Hence, we shall consider two variations 
of this method, which may be compared to the sunlight shining on a cloud from above 
(at noon) or from the side (at sunset). In both cases we shall study the statistical 
distribution of the set formed by the most prominent features of the front. In the lattice 

for a simple cubic lattice deduced from the average position of these illuminated 
subsets of the front. In the continuum case the application of the method is somewhat 
more complicated, and different ways of statistical analysis may be chosen. However, 
it yields a new, more precise estimate for pc  as well. The generalization to the case of 
polydispersity at this point is feasible. 

The paper is arranged as follows. In section 2 we introduce the method with its 
two variations, namely the illumination and the projection methods, for both lattice 
and continuum cases. We also show that the illuminated and the projected parts of 
the front are at p c ,  In section 3 we present our results for a simple cubic lattice and 
in section 4 we present those for a continuum percolation case. Our conclusions are 
presented in section 5. 

A Margolina and M Rosso 

T t "  I < ,  ^_>.I. ^ ^ ^ _  A..*.:..: ...- '--:,. , - : - - - r * c ,  TL ̂ ^^_._^ ,:--LA- ̂ r.L -... >!.~.. 

Case this method i s  straigh!forward and i t  !ea& to a newI more precise, estimate of pc  

2. Illumination and projection of a percolation cluster at pc 

Let us first consider the illumination method in a simple 3~ lattice case. We define an 
illuminated site as a site which belongs to the percolating cluster with no other site 
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belonging to the percolating cluster in the lower p direction. In other words, if the 
concentration gradient is along the t-direction, with p ( z )  decreasing while z increases, 
for each (x, y )  in a plane perpendicular to z, the illuminated site is the site with the 
largest z which belongs to the percolating cluster. Such a site would be illuminated 
from a light source situated above it (in the low pllarge z region). All the sites with 
the same (x, y )  below the illuminated site would be in its shadow. 

If z,,,(x, y )  is the z-coordinate of an illuminated site then we define pz =p((zmax)), 
where the average (. . .) is taken over all (x, y )  in a plane perpendicular to z. Identifying 
the illuminated sites is a straightforward operation for the computer (however, in 
contrast to the ZD case, where the front can be identified without identifying the entire 
percolating cluster, we still need here to determine the percolating cluster, and only 
then to find its illuminates sites). It remains to show that, in the limit of zero gradient, 
p $  indeed tends to pc. This follows since in this limit all illuminated sites tend to be 
at p c .  To see this, it is sufficient to consider the definition of the percolation probability 
P_(p) for the infinite cluster (the probability of a site to belong to the infinite cluster): 
it is zero below pc, and larger than zero, increasing with p. above pc. Thus, in a 
probability gradient the sites which are close to pc may be divided into two groups: 
those below pc tend not to belong to the infinite cluster, hence neither to its illuminated 
part. On the other hand, take a site S with coordinates (x, y ,  zn), belonging to the 
infinite cluster, with p(zJ =po>  pc. If we make the gradient Vp go to zero, the distance 
zn-zc between the site S and the site with coordinate z, at which p=pc ,  tends to 
infinity. As the probability P_(p) is positive for anyp>p, ,  this clearly means that the 
probability for the site S to be illuminated, i.e. the probability that there is no other 
site of the infinite cluster, with same x and y and pc<p<po,  tends to zero when 
Vp+ 0. In this way of thinking it is clearly seen that the illuminated sites (with highest 
z, still belonging to the infinite cluster) form a natural border or frontier between those 
two groups and, thus, tend to be at pc. 

In the projection method one makes a projection of a finite part of the infinite 
cluster on a plane parallel to z-direction. The low p front of this projection (with a 
definition similar to that of a ZD gradient percolation [l]) also tends to be at pc. We 
then define p,*,=p(z,,), where zip is the mean position of the projected front. In the 
next section, we shall see the results for both the illumination and the projection 
methods for a lattice case. 

Both illumination and projection methods thus consist in recognizing subsets of 
sites, belonging to the infinite cluster, and situated in a region where p is as close as 
possible to p c ,  This approach lies within the same framework of thinking as the 
concentration gradient method approach in ZD [l, 21. 

The generalization of the illumination method to the continuum case is as follows. 
We consider the percolation of overlapping spheres of radius r,, with a negative 
concentration gradient along the z-axis. Having identified the connected (infinite) 
cluster we find the illuminated spheres by imposing a square lattice with a certain 
mesh on a plane perpendicular to the gradient direction. At each node (x, y )  of this 
lattice we identify the highest sphere belonging to the connected cluster. We call 
z,,,(x,y) the z-coordinate of the centre of this sphere. This sphere is then the 
illuminated sphere corresponding to a chosen mesh size (we have usually chosen a 
mesh size r J 2  in our simulations). Of course, with a finer mesh size one may identify 
finer details of the illuminated part, which should result in a more accurate determina- 
tion of the average position (zmax). Instead, one may use a finer statistics as another 
possibility to improve the precision, having observed that some spheres have spanned 



3904 

several mesh sizes while the others (usually, the ‘lower’ ones) would only appear once 
or twice in overall statistics. Thus, there is a possibility to form a weighted average 
proportionally to the area which is illuminated for each sphere (this area is determined 
according to the mesh size). Namely, such a weighted average (zm& is given by 
Xj ngzj/(Xjni), where n; is the number of lattice nodes corresponding to a given sphere 
with a centre at zi. We shall also calculate the usual average position ( z ~ ~ , ) ~ . = & z ~ / N ,  
where N is the number of illuminated spheres. 

Cieariy, aii the considerations for the average position of the illuminated of the 
front being at pc apply also for a continuum case. The projection method may also be 
applied to the continuum case to find an alternative estimate of the percolation 
threshold. Both methods should also be applicable to polydisperse case. 

A Margolina and M Rosso 

3. Results for the simple cubic lattice 

We have used L‘x L’x  L lattices, where L’= 176 or L‘= 240 and L< 275, with periodic 
boundary conditions in the x and y directions. The sites were coded using 2 bits as 
follows: &empty, 1-occupied, 2-connected. The occupation probability ranged 
from pmin to pma,, with pmin<pc<pmarr so that the illuminated front has remained 
within these ! i ~ i t s  in a!! our $gmp!er. For !he !a:gest g:adlen!s one m y  take pmin = 0 
and pmar = 1. Our gradients ranged from 1/50 to 1/4800. The occupation is decided 
according to a probability: p(r) =pm.,+(pmin -pmax)z/L. The recognition of an infinite 
cluster starts from pmax ( z  = 1): all occupied sites at z = 1 are considered connected, 
hence Fm(pmax) = pmax. This, obviously, introduces a systematic error, which is expected 
to disappear at z larger than the correlation length at pmai. The determination of the 
illuminated and the projected parts has been described above in detail, and these parts 
are shown in figures 1 and 2, respectively. It is interesting to note that the illuminated 
front is not necessarily connected and that, though its structure is still complex, it is 
visibly simpler than the whole 3~ front of a percolation cluster. 

The results of illumination and projection methods are shown in figures 3-5. Figure 
3 shows how pz (illumination method) and p$ (projection method) tend to pc: from 
above for illumination, and from helow for projection. We have verified that, at least 
for a lattice size L‘much larger than the width gr of the illuminated front, the threshold 
pz does not depend on L‘. On the other hand, the value of p& does depend on L‘ for 
the projection method (p$ is larger for smaller L’) in the whole investigated size range. 

Assuming a scaling behaviour similar to equation (1) for both illuminated and 
projected fronts we write that pz and p& tend to pc according to 

(PZi -PJ - (vP)a”i (30) 

(P&--PJ-- (VP)“”.. (36) 

The fitting of our results to equation (3a) for illumination gives 

~ $ ~ = 0 . 3 1 1  7 3 + 0 . 8 2 9 ~  (Vp)0’72s 

fro- which *re obtain p, -Q.?! !  73+7Y!o-5,  and api=n.725i-n.?04. We wish to 
emphasize that the value for the threshold is rather sensitive to the value of up!.  For 
example, api =0.72 gives p.= 0.311 65, and aDi = 0.73 gives p.= 0.311 82. However the 
value we obtain for pc with api = 0.725 remains within the error bar quoted above for 
a fit reduced to the n lower gradients shown in figure 4, with n 3 7. 
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Figure I .  Illuminated front. l n a 2 4 x  2 4 r  24rimpircuhiclattice. withconcentration ranging 
from 0 lo 1 from top lo bottom, connected sites are shown as grey cuhes: the illuminated 
sites (the highest in a given column) are shown in light grey. 

The projection method has a slightly different scaling behaviour, a t  least for high 
gradients, as shown in figure 4. However, for low gradients, the two methods appear 
to have the same limiting behaviour, hence a,,=a,,. Thus, both illuminated and 
projected pans  of the 112 front seem to belong to the same universality class. 

The new estimate of p c  needs to be compared with four most recent and accurate 
estimates: p c  = 0.31 17* 0.0003 [IS], p c  = 0.31 I 605+ IO-' [191, pc - 0.31 1610.0001 [20], 
p,=O.311 58*0.000 06 [21] respectively. It is in agreement and more accurate than 
[18] and [20]. I t  is not in agreement with (somewhat higher than) [19]. I t  is compatible 
only with a higher estimate of [21]. The high accuracy of our results may be substantiated 
by the following comparison with the analysis made in [ 1 8 ] .  As will be shown below, 
the width us of the illuminated front scales with the gradient according to equation 
(2),  yielding a,,=0.436. Thus, the width of the illuminated front in terms of the 
probability tends to zero as w = U,; x Vp - Vp".564 when Vp -f 0 (whereas'the width of 
the whole front in terms of the probability remains almost constant). Now ( p x - p , )  
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Figure 2. Projected fronts: ( a )  The connected cluster shown in figure I is represented here, 
as seen irom the ieit. Tie iow concentration front of  this projection is shown as a hatched 
zone, at the top; ( b )  projection of the connected cluster, for a much  malle er gradient 
(Vp = 1/700). 

0’4 7 
o illumination 

0.3 1,. - projection 

0 . 1 5 L  O.Zo 0.005 0.01 0.015 0.02 [ 

VP 

25 

Figure3. Variation of the average positions of illuminated and projected fronts as a function 
of the gradient Vp. 

converges to 0 as V P ~ . ’ ’ ~ ,  hence more rapidly than the width w. Thus it converges more 
rapidly than in the classics! methnd [!@+ where the threshold for a given finite sample 
size L, p J L )  tends to pc  according to p c ( L ) - p c -  W, where W is the uncertainty in 
p , ( L ) ,  a parameter very close to our width w. 

Finally, in  figure 5 we present our results for the width of the illuminated and 
projected fronts. A generalization of equation (2) to the 3~ case is straightforward, 
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Figure 4. Variation of the average position of the projected front, scaled with Vp0.'" 
(equations (40). (4b)). 

Figure 5. Variation of the widths of the illuminated and projected fronts as a function of 
the inverse gradients I I V p .  

assuming for the widths ufi (illumination) and urp (projection) as a function of gradient 
the following scaling behaviour: 

ufi oc (Vp)-"= (4a) 

Urp" ( V p ) - %  (4b) 
Fitting our data to equation (4a, b )  yields: (I,! = 0.436 for illumination, and a somewhat 
higher (1,,=0.539 for projection. We note that both estimates are different from the 
expected value (I, = U/( 1 + U) = 0.468 for U = 0.88 in the 3~ case. This could either be 
due to corrections to scaling or this could indicate some fundamental differences 
between the structures of the ZD front and the illuminated and projected fronts in 3 ~ .  
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4. Results for continuum percolation 

We have used a cubic box of size L’, where L ranged from 30r, to 140rc, with periodic 
boundary conditions in the x and y directions. The concentration of spheres c ( z )  
ranged from cmin at the top of the sample ( z  = L) to c,,, at the bottom ( z  = 0), so that 
the critical concentration C,,~, lies in this interval, and that the illuminated front remains 
within these limits for all our samples. The gradients ranged from 5.9 x rL4 to 
7.1 x IO-’ rL4. We identify the connected cluster starting from c,,,, at which all spheres 
are considered connected (see above for the lattice case). The recognition of the 
illuminated part and the statistics of averaging is described above in detail. In the 
projection method a subset of the connected sites is considered, which lies in the low 
concentration region of the illuminated sites. For this reason, we could use this method 
for samples with narrower concentration distribution, hence smaller concentration 
gradients. In this case, the gradients have reached down to 2 x 

Various equivalent definitions have been used in the literature for the percolation 
threshold of overlapping spheres [13,22-291. Following Kurkijarvi [24], we chose a 
definition for pc  which is independent from length units: pc=41r/3cCci, ra. From this 
we shall determine the critical volume fraction (CVF), which is the fraction of the 
volume occupied by the overlapping spheres belonging to the percolating cluster to 
the overall volume: CVF= 1 -exp(p,). 

The illuminated part is illustrated in figure 6. One can arrive in this case at the 
estimate of the percolation threshold following two different methods. First method: 

A Margolina and M Rosso 

rL4. 

Figure 6. Illuminated part of the front in the continuum case. All connected spheres are 
shown: the connected. illuminated spheres are shown in light grey. 
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assume, due to universality, the same value api = 0.725 as in the lattice case and fit the 
data onto equation ( 3 a ) .  The results of this approach for both standard and weighted 
averages are shown on figure 7 ( a ) .  The resulting estimate is p,=O.341 (standard 
average) or p,-0.343 (weighted average), with a somewhat better fit for the standard 
average. The second method requires a fit onto equation (3a) with no other assumption 
and the results are shown on figure 8. We obtain a somewhat higher value: p,=O.344 

Once more the fit is somewhat better for the standard average. Thus, our overall 
estimate for pc  is about 0.343 * 0.002. The results are not as accurate as in the lattice 
case for two major reasons: the samples were much smaller here, while the smallest 
gradient we have considered is one order of magnitude larger than in the lattice case; 
the number of samples had to be reduced due to the increased time of computation. 

Our general estimate for p: corresponds to a critical volume fraction (CVF): CVF= 

0.291 *0.002. This result is well within the range of the most accepted values including 

(standard average), with n .=0.77 p,;.Q.?'@ (Weigh!& aver.ge), With I* .=Q.nAl -P' -v  

1 1 

0'34d 0.005 0.01 0.015 O.d2 0.025 0 . k  

0.33 , 
-... projeC,,on 

0.41 1 J 

c: 0.3 
0.4 ib,  

0.29 T 

0.28 0 36 

13 

VPO.725 vP0.725 
Figure 7. Variation of the average positions of the illuminated front. scaled with VpO."': 
( a )  illumination method, both for standard average and for weight average; ( b )  projection 
method. In this latter case the (Vp)07'J fit is performed on the four series of samples with 
smallest gradients and same size L =  140 ri. 

0.48 

0.46 

0.44 

* 0.42 
a" 

0.4 

0.38 

0.36 

0.002 0.004 0.006 0.008 

VP 
Figure 8. Best fits for the variation of the average positions of the illuminated front as a 
function oi the gradient V P .  
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[13,22-261: CVF=o.285 [13], CVF=O.286 [22], CVF=0.282 [23], CVF=0.293f0.008 
[24], ~ ~ ~ = 0 . 2 8 6 * 0 . 0 0 9  [251, CvF=0.295*0.018 [261, respectively. It is lower than 
C V F = O . ~ ~  i0.006 [271, which may be considered as overestimated [13], and somewhat 
higher than CVF = 0.25 * 0.02 [281. As these results have not been verified for decades, 
our method seems to offer a possibility for such an improvement in precision, 

The results of our study of the illumination front width uc are shown in figure 9. 
Both standard ana weighted averages Indicate values of ar very close to that for the 
lattice case: a,,,,=0.424; a,,,.=0.435, while a,,=0.436 in the lattice case. Thus, the 
universality seems to be observed after all [29], which indicates favouring our first 
method of preserving ag, = 0.725 from the lattice case when seeking p c .  Thus a somewhat 
lower value of cv~=0.290 should be preferred. 

10, 

--illumination ( s a )  
-illumination (w.a.1 
--projection 

1 L  
1 02 I 03 

1 /vp 
Figure 9. Variation of the width of the  projected front as a function of the gradient V p .  in 
illumination and projection methods. 

Finally, the results for the projected front are shown in figures 7(b) and 9. The 
exponent for the width of the front is a,,=0.48: it is different from the exponent of 
the projected front in the lattice case (see previous section). We have no definite 
explanation for this fact at present. As in the lattice case, p:, depends on the size L 
of the samples. Hence, to obtain the percolation threshold we made a fit on the results 
obtained for samples of the same size (see figure 7(b)). Using a (VP)~-’*’ fit, we obtain 
p,=O.342, a value very close to that obtained from the illumination method. Such an 
excellent correspondence is certainly very encouraging. 

5. Discussion mud conclusion 

We have presented two different methods for studying the 3 0  percolation cluster in 
the framework of a gradient concentration approach. These two methods consist in 
an efficient way of determining subsets of the percolation cluster which are exactly at 
the percolation threshold. Following the gradient method derived in 2D, we use this 
approach to determine a better estimate of the percolation threshold in 3D. 
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Illuminated and projected fronts are shown to tend asymptotically to pc as the 
gradient tends to zero: their average position is shown to converge to pc according to 
equations ( 3 a )  and (36). Within statistical errors, the exponents api and mpp are shown 
to be equal, and to apply in both lattice and continuum cases (universality). 

The widths of the illuminated and projected fronts are found to scale (equations 
(4a ) ,  (46)) with the concentration gradient. The exponents are slightly different for 
illumination and projection. In both cases they are different from the value which 
would be deduced from a generalization of the ZD front (equation (2)). 

Illumination and projection methods may be compared as follows. The average 
position of the illuminated front is independent of the size of the sample, as long as 
this size is larger than the width ufi. On the other hand, the average position of the 
projected front does depend on the sample size. However we have found that, for a 
fixed sample size, the threshold p& determined from this position converges to pc  with 
the same exponent as p z ,  at least for small gradients. 

In the continuum case, our generalization of the illumination method required the 
use of a mesh. We have checked the dependence of our results for p z  as a function 
of the size of this mesh. The value p ;  (standard average) was found to depend on the 
mesh size, at least in the investigated range (mesh size of the order of the radius rc).  
The use of a much smaller mesh size would have required much longer computer time. 
On the other hand, p; (weight average) was found to be almost independent of the 
mesh size in the same conditions. Note that, even though p:  (standard average) does 
depend on the mesh size, we expect that its limit for zero gradient does not (this is 
due to the fact that, in the limit V p  + 0, both the illuminated and the projected parts 
of the front tend to be at pc,  see section 2) .  

The projection method does not require the use of such a superimposed mesh; it 
requires slightly less computing time and permits the investigation of the gradient 
range to slightly smaller values. Hence, whereas in the lattice case the illumination 
method is preferable, for the continuum both methods may be used equally. 

In conclusion, we have presented and analysed two new methods for studying the 
front of the percolation cluster in a concentration gradient. It has allowed us to achieve 
better estimates of the percolation thresholds for 3D lattice and continuum percolation. 
We have studied several scaling and universality features of the illuminated and 
projected fronts and compared them to those of standard percolation. Other 3~ 

continuum percolation problems might also be investigated using these methods [30]. 
Their generalization to the case of polydisperse continuum percolation is underway. 
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